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Abstract

Three related successive approxima- xi . gi(xl ' - "' Xn' YI' -, yIP t)
tion schemes for determination of optimal
trajectories are developed with particular i= , - - -, n
attention to treatment of inequality con-
straints on control variables. The first
is a gradient method based upon a Eucli- The variables xi, i - 1, n, are
dean metric with appropriate modification state variables and the variables
for handling of inequalities; the second
employs a Min operation without use of a Yk, k - 1, - -, 1, are control variables.

metric; and the third features a special The functions gi are assumed to possess

integral-absolute value metric. The Pon- continuous first partial derivatives with

tryagin Principle is employed for con- respect to their arguments.

struction of successive control function
approximations. All three schemes employ Initial conditions xi(to) io

an adjoint system for computation of in- i - 1, - -, n, are prescribed. In addi-
fluence functions and a 'penalty function, tion some of the terminal values xi(tf) -
technique for handling of constraints on xif may also be prescribed. The terminal
terminal values.f

time tf will usually not be fixed; thus

Illustrative calculations are pre- its value is regarded as 'open' for opti-

sented for planar Earth-Mars transfer mization purposes.

with rocket thrust variable between lim-

its T, < T < T 2 . The relative merits of

the techniques are discussed from the
viewpoint of digital computation. P = P(xlf, - , xnf tf) (2)

Introduction
of the terminal values of the state varia-

Recent work on successive approxima- bles and the terminal time. This is the
tion techniques for numerical solution of general problem of Mayer, encompassing a
variational problems involving differen- large class of current problems in flight
tial equations as subsidiary conditions performance, control, and guidance. It
has provided a clear indication of the has recently been observed by Hoelker
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practical usefulness of this class of that similarities in mathematical treat-
methods when employed in conjunction with ment of these problems provide a strong
high speed digital computationl,2,3,4 . In influence toward unification of future
the present paper we report some recent efforts.
developments of techniques which are ap-
plicable to problems featuring inequality
constraints imposed on the control varia- 'Penalty Function' Treatment Of
bles. Terminal Constraints

We may relax the requirement for
Problem Formulation meeting fixed terminal conditions on the

xi in favor of an approximation: the

The basic system of differential addition of terms to the function P of
equations describing the process of inter- the form
est is presumed given in first order form 1



m n n
P + K (x 2 (3) d 6x i  A i  (6)

TP if f Txi .f),i Yk by k

J-1 i-i i-i k-i

which may be verified directly by differ-
entiation and use of (4) and (5). Inte-

(The summation ranges only over those grating both left and right members of (6)
variables subject to specified terminal between definite limits we have
conditions.) _n ]t

The notion underlying this approxima- 
f

tion is that the solution of the problem 5X xi  fiMin P' will, under appropriate conditions

tend toward the solution of the original i-i t
problem as the magnitudes of the Kj are
increased. This idea is due to Courant6 .
Its basis and application are discussed in tf n
some detail in Ref. 3. We may now deal n
with the problem of minimizing P' with Xtgi dt (7)
terminal values of the xi 'open.' JYk 6y k

t i-I k-I
0

Adjoint System

As in earlier work1 ,3 ,7, we employ an In terms of a function H* defined by
adjoint system of differential equations
in variables Xi  obtained from the line- -

arized version of (1) H(xi, -P - Xn S - -X n'

n g 69 n

5 +k 6 yk (4) Yl -, Y, t) -9igi (8)

J-l k-I i-i

i - 1, - -, n

this may be written:
[The linearization is in the neighborhood
of Yk - 1 k(t), xi - i(t), a solution of n tf
system().1 .

6 x.
To obtain the adjoint system, one discards 

T I I

the control terms, transposes the matrix iil t0
of coefficients, and changes the signs of
the right members: tf

L ---6Yk dt (9)
S " -- 1, - -, (5) t k -

j-1

g- We shall need a version of (9) which

The partial derivatives are func- incorporates higher order effects, in par-
1 ticular one for which linearization with

tions of t only, being evaluated along respect to the control variables is a-

Yk - Yk(t), xi = i(t). voided. Our development from the proper-
ties of adjoint systems follows that of

The most significant property of ad- Ref. 7. Working temporarily with finite
joint systems is given by increments Axi = xi Xi, - Yk = Yk - Yk,

2 we get from (1)



i " gi41 + Axl, -, x + xn +Yl ' - ", Yj + Ayl, t)

-gi(x 1, - -, xni Yl' - "' Y2, t) (10)

From integration of

n n n

d NiAxi ii 7' X (11)

i-i i-I i=1

we then obtain

n tf t

i Ax i  I Ax i dt

i-1 t i -

t i-1
0

Yl + Ay l '  -" +Ayl ' t)

-i - -, i", y1, - -, Y1, t) ] dt (12)

If we employ an expansion of the
functions gj in a Taylor series in the
Axi, including a remainder term

gi(X1 + Ax1  - - n + AX n , yl 
+ Ayl - " , + Ay, t)

gi 1 , - -,x", Y1 + Ayt, " " + Ay, t)

n

+ X-(X1, 1l+ Ay1 , y + Ayj, t)AXj

J-l

+ (X + Ax - x+ AX,
)X )x Is + nl

J-1 s-I
71 + AyI, " "' Y + Ayg, t)AxjAxs (13)

3



where 0 < q < 1, q-I, - -, n, then

(12) becomes

n tf tf n

X- ?i AX i - Ijgi(x1  - nx, y1 + Ay1 , -,Y 2 + Ayl, t)

+ ?i ( xjg (xl '  - ', xn' Y + AY' " -' Y + AY' t)

- j(Xl' - -n' YI - Y ' t) d xt d

tf n n

+> i); (Xl + ?i1xl, - -, xn + nAx,

XJ n

t i-i j-l s-I

0

l + -'" -' Y + Ay, t) Ax Ax s dt (14)

Note that the series development assumesthe existence of the second partial deriv-
atives of the gi with respect to the

state variables. In terms of the function
H" defined by (8), the expression (14)

may be written:

Stf tf *__,__

?i Ax1 n n n'

i i

t to

0, ++----------) x x d (4

in which only the term of the right member
dominant for small Ay is shown. Since rivative of the function P(x, -

the functions i(t), Aict) may be re-
garded as known functions of t evaluated
from (i) and (5) for the control functions d
Hk(t), the function H* appearing in P (X " - Xn t) -

(15) may be considered a function of the
AYk and t only.

in ~~~~ ~ i whc onyth em fte ih mme

Terminal Time Criterion Sic+ ofx i  -, ()

We employ as trajectory termination i-I

criterion the vanishing of the time de-



This amounts to a one-dimensional search t

for the value of tf which minimizes tf
P1(x 1 f, - -, Xnf , tf), performed concur-

rently with numerical integration of the J 1 + yli A t)

basic system (1). The terminal time tf t
is determined by a zero of (16), t > to,
for which d P is negative.

fr w- c (Yld-- -, t)] dt (19)

Effect Of Control Variations On The the higher order terms having been
Function P1 dropped.

Beginning with some first approxima-
tion for the control functions Yk ( yk(t) Modified Gradient Method
and the corresponding solution of ),
xi - ii(t), we wish to obtain successive Sketching first the basic gradient
decrements in the performance function method for obtaining negative increments
P', eventually approaching a minimum. We in P', we employ (19) for construction
assume that this first solution of (1) is of control variations Ayk(t). We wish to
terminated according to (16), and we des- limit the step size' in some way as to
ignate the terminal time tf = Ef. If the limit the stepmsize ceinso firwayoaset
control functions are altered, producing guarantee the predominance of first order

i effects. A constraint on the 'distance'increments Axi(t )  in the state variables, covered in the step as measured in the
a first order approximation to the incre- Euclidean sense
ment in the terminal value of P' is
given by tf

n F 2 2OP Ayk 2 dt - ak2 k - 1, (20)

618' (20
AP - X Axi(tf) to

-if

is the conventional means employed. If
the constants ak  are taken sufficiently

n small, then (19) will be a good approxima-
+. )P • - tion to the actual change in P' and it+ txf + xi(tf) Ltf (17) is sensible to seek a minimum of (19) sub-6t i f ject to (20).

For this purpose we apply the Pontry-
in which the partial derivatives of P' agin theory7,8,9, the full advantage of
are evaluated for xif - Xif, tf - tf. this approach becoming clear as we later

proceed with treatment of inequality con-But by our choice of ef determined by straints on the Yk. The integrals (19)
(16), the second member on the right of and (20) are represented as the terminal
(17) vanishes. values of variables zl(t), - -, ZA+l(t)

Referring to (9) and (15) and noting satisfying the system:

that the Axi(to) are zero as a conse-
quence of fixed initial conditions on the 2 t
xi, we see that if boundary conditions zk M AYk z -k(to) 0 , Zk(tf) - ak

X i(tf) " -X (18) k 1, --- ,A (21)

are imposed upon the adjoint variables 
Z+1 H(y, + Ayl, -YJ + Y t

evaluated along Yk(t), i(t), then the
following form of (15) is obtained: - H (yI, - - Y, t)

z +,(to) - 0 (22)

5



Thus a statement in terms of an auxiliary then determines the control increments as

Mayer problem is obtained: Min z4.l(ff).
i Hk-I -- , (9

Introducing adjoint varia les pl(t), Ayk I k I, A (29)
pA+l(t) and a function H defined Pk

by The constants Pl, - -, pi must sat-

I isfy the requirements

H - Pk y f
H - pk yk zk(tf) t f Ayk 2 dt
k-l =d

+ P1+I [ H (yl + AyI, - ", y + Ay, t) o

- H(YI, - -, y2  t) ] (23) oH.2 2

I j dt -ak (30)

we then write the conditions 
4Pk2

J  6k k

0

Pkc 0 , k - 1, - , (24) or

t

0

H (Ay,- AY , pl y pI , 0, (26)

^ ^k-fIi, - -,A (31)

> H(Ay I , - -, AyA, PI - -, PA+I' t) (26)

Evidently the negative sign corresponds to
A a maximum of ze+l(Ef) - AP' and the pos-

The Ayk - Ayk(t) minimizing z2+l(tf) itive sign to a minimum. Choosing the

are determined from (26), the Pontryagin latter, we obtain
principle, whose alternate form is

1

A 
2

Min H (27) f 2

AP A k1 dt (32)AYI'- "'&Y* P - • , ak] yk/

The expressions (26) and (27) are k-l to
equivalent to the necessary condition of
Weierstrass, and represent a generaliza-
tion thereof if inequality constraints on We have found the direction of

the Ayk are operative, as will later be 'steepest descent' in the sense of the

the case7,9 . In the absence of such con- Euclidean metric (20), and, according to

straints, the minimum of H sought in (32), the increment AP' must be negative

(27) must also be a stationary point, or zero. The functions H* (t) evalua-
this following from the differentiability )yk

property of the functions gi assumed ted for Yk - Yk(t) assume the role of
earlier. The vanishing of the partial gradient components and the 'steepest
derivatives descent' process is governed by

A **

3Ha2_k6_-_ H_ y b k - b k< 0
)Ayk p y k - kYk k

k- 1, - -, 1 (28) 6 k -, -- , 2 (33)



We now turn attention to means for while at the upper limit Yk - Yk2
handling inequality constraints on the
control functions Yk' It is assumed
that the inequalities can be converted to *
the form Ayk = 0 if - < 0

bk < 0 (39)
Ykl S Yk S Yk2 'l~Yk1 Yk k2Ay

k  -b k H* if H* >

k (34) yfb-yk-0

Thus we arrive at a modified gradient
method.

which is usually the case in applications.
The development up through (26, 27) is In a descent process for which the
identical for this case, except that the steps are vanishingly small, essentially
Min operation in (27) must be performed a continuous process, the governing equa-
subject to the additional constraints tions (36), (38), (39) will succeed in
(34): holding the control variables Yk within

the desired range Ykl 5 Yk 5 Yk2' There
will be difficulty, however, if finiteA

Mn H (35) steps are taken, and to avoid this, itwill be necessary to 'trim' the functions
- -Ay 7k + Ayk obtained for finite bk to con-

yform to the inequality (34) before employ-
ing them in numerical integration of the

Yk1 Yk S Yk2 basic system (1).

The general mode of operation for

An examination of the minimim prob- gradient calculations has been described

lem (35) for vanishingly small step size in earlier publicationsl,3 for cases in

lakI leads to the formulas which only a single control variable is
employed. It consists of numerical solu-
tion of the basic system (1) for a number
of values of the descent parameter b,

Ayk m bk , bk < 0 (36) the parameter being varied systematically
in one-dimensional search for a minimum
of P'. In problems involving a number

if Yk is an interior point of the in- of control variables, an identical treat-

terval, i.e., for ment may be given to each in turn; or al-
ternatively, a more complicated multi-
dimensional search versus the bk may be

Ykl < Yk < Yk2 (37) implemented.

A Successive Approximation Scheme
At the lower limit Yk w Ykl Employing the Min Operation

A shortcoming of a gradient process

is that over intervals in which H* is.H* --L 0ykAy bk if < 0 small in magnitude, the correspondingAyk f y - changes in Yk will be small. After sev-

eral steps the Yk may still be far from

bk < 0 (38) their optimal values over such 'insensi-

tive' intervals owing to this feature of
0 * >the gradient process. This, of course,

AykO if - stems from the rather arbitrary imposition
6yk -of the Euclidean distance measure. From

an engineering viewpoint this is unimpor:
tant if only the value of P is of inter

7



est, as is often the case in flight per- and evaluating P' versus C, a one-
formance work. It is inconvenient if a dimensional search analogous to that per-
family of neighboring extremals are re- formed versus step size (the bk) in
quired, as, for example, in connection gradient computations.
with a guidance study, because this re-
quires that additional computations be There is, of course, a question of
performed to converge the control variable convergence with this scheme, hinging on
histories to within the desired accuracy. whether or not the increment AP' given

by (19) is negative for some C in the

It has been speculated that an ap- range 0 < C < I normally explored. Evi-
propriate procedure for treatment of this dently a sufficient condition for AP' < 0
situation is transition to a scheme for for small C is
systematic numerical solution of the
Euler equations, and this appears plausi- -

ble on first consideration. One finds, lim[H (yl+ (yl-yl),- -,yj+r(y*-yJ), t)
however, that the appropriate linear com- -0
binations of adjoint solutions do not
yield a good approximation to the multi-
plier functions of the 'indirect' theory, * - *
and, in particular, the required initial - H (y , ygP t) = - l - -
values of the multipliers may be suffi-
ciently in error to cause difficulty in k=l
an iterative adjustment process.

The successive approximation scheme YJ' t)] (yk* - Yk) < 0 (42)
of the present section was originally de-
veloped for refinement of control pro-
grams of near-minimal gradient solutions
into close approximations to Euler solu- which requires that the directional de-
tions, i.e., to accelerate convergence in rivative of H* be negative in the direc-
the later stages of the descent process. tion of the minimum point Yk - Yk*. This
It appears, however, to possess merit as requirement will be met globally, i.e. for
a primary computational scheme, as will all admissible starting points Yk = Yk,
be discussed later in connection with an if the function H*(Yl, - -, y1, t) pos-

example. sesses no stationary points or interior
extrema in the region defined by (34),

Instead of employing the somewhat other than the minimum at Yk = Yk "

arbitrary Euclidean metric (20), we
choose an equally arbitrary alternative: In the original conception of this
discard the use of a metric, calculating technique as a refinement scheme, only a
new control variables Yk* from the op- local version of the requirement discussed
eration in the preceding paragraph requires con-

sideration, and this requirement is auto-
matically met if the gradient process has

Min H (y) (40) progressed sufficiently before transition

Ykl Yk Yk2 to the Min H* scheme. From the viewpoint
of more general applications, the require-

k 1 1, 1 -, ments on the function H* discussed above
constitute a limitation; yet the class of
problems for which convergence is assured

In adopting the control Yk k*t a priori is sufficiently large as to war-
adplYk Ykt rant considerable interest in the scheme.

generated by the Min operation as our next
approximation, we risk the violation of
our linearizing assumptions, for this may A Successive Approximation Scheme
represent a large step process. More con- Employing An Integral-Absolute
servatively, we may elect to replace the Value Metric
large step by an exploratory series of
small ones, setting A third method for computing optimum

trajectories by successive approximations

Syk(t) + [Yk(t) Ykt] (41) is obtained by substituting an integral-
Yk k +Ykt) absolute value metric for the integral

square metric of (20):

k-I; -- ,



-o f
Ayk  dt a ak > 0 (48)

0Pi+I 0 pJ+l(tf) =I

k 1, - -, A (43)

The Ayk are now considered as new con-trol variables with time-varying con-
Although apparently not limited to cases straints which are compatible with the
in which the optimal control is bang-bang, constraints on the control variables Yk.

this method appears to offer the advantage a n the casthe cotaits
in such cases that if the optimal control As in the previous cases, the constraints
is bang-bang and the first approximation on Yk are assumed to be of the form
is taken to be bang-bang, all successive
approximations will also be bang-bang. Ykl Yk Yk2 (49)

8B4 applying the Pontryagin theo-
ry7, in a manner similar to that of
(21) to (27), we obtain: A necessary condition for AP' to be

a minimum is that the Ayk minimize H
for all to < t < tf subject to (49).

Zk kAykf zk('to) - 0, This is expressea as

A

Zk(tfj - ak > 0, k - i, - -, (44) Min HAkt) k>Ay l , - -, yl (50)

and
Convergence is assured by limiting the
magnitude of the ak  defined in (43).

i1+I  H (yl+6yl, - -, yI+AyI, t) However, we will see that this no longer
requires that the change in the control
variable be small at any particular t.

- H(YI, - -, Y' t) , Zi+l(to) - 0 (45) From (48) and (49) we obtain

From (19) the function we wish to minimize Ay!+H* y-is H =Pk':AYkl + H (yl+AYl,  - -

k=1

AP - Zl+l(tf) (46)
yl+IAyl, t) - H (yly - - A' Yl t) (51)

Thus we have a new minimum problem to
which we may apply theAPontryagin princi- where Pk is a constant (Pk = Pk)'
pie. A new function H is defined by Since the ak were not previously speci-

fied, aside from the requirements that
they be positive and small in magnitude,

I we may consider the Pk as constants to
A be later found by performing a search,
H - Pk!AykI + pl+I[H*(YI+Ayl, - -, evaluating AP' versus Pk"

Ak-i The function H to be minimized
given by (52) can be thought of geometri-
cally as the superposition of a cone on

YI+Ayl, t) -H (yI, " -, Yl' t) ] (47) the surface AH":

where pl(t), - pA+l(t) are adjoint AH H (Y1 +Ay1 , yA+AyA, t)

variables satisfying toe system of differ-
ential equations * - t) (52)



Let us now consider the treatment of one tained when Pk is equal to the maximum
control variable at a time. We rewrite value of I42 (t) I in a region where it is
(52) as possible to change Yk subject to (55)

and (49). If we decrease Pk a small
H - plAyl + - -, t) amount beyond this threshold value, AykH Pi + (Yyj y t)will change by its maximum value for a

limited period of time.
-H (yi, - ,y1, t) (53)

Low Thrust Example

Kxamining (53), we see that the minimum of
H with respect to Ayj occurs either at For illustrative computations we

choose the problem of planar low thrust
a stationary point (H/)Ly k f 0), at the transfer between circular orbits, which
apex of the cone where Ayk = 0, or on has been employed in earlier technique de-
the boundaries determined by (49 . For velopments3 ,10. The system of equations
pj very large, the minimum of H occurs governing the motion is given by:
at the apex of the cone for all time and
Ayk = 0 everywhere. As p is made Radial Acceleration
smaller, a point is reached where the min-
imum changes from the apex of the cone to 2  R2

boundary or an interior point over an uXg -- - A + - sinG (56)
infinitesimal interval of time. This
value of pj we will designate as the
threshold value of pj. If we continue to Circumferential Acceleration
decrease pj a small amount below its

threshold value, Ayk will take on non- uv e
zero values over finite intervals of time. g2  R m cos
It is to be noted that the 'Yk at any

time are themselves not necessarily small.
The final selection of p. is determined Radial Velocity
by evaluating P' via (iM for several
values of pj below its threshold value Ri g3 = u (58)

and fitting a parabola to the points. The
minimum of this parabola then determines
the optimal pj. Circumferential Angular Velocity

To illustrate the possible advantages
of employing the integral-absolute value (59)
metric, let us consider a system linear in g4 = (

the Yk and for which the optimal control
is bang-bang. For this case H* can be Propellant Expenditure
written in the form

T

H ) 1i(x, ?, t) + Yk2(x?,, t) (54) V(e
A

giving for H: The exhaust velocity Ve is taken
constant and the thrust T variable be-

A tween fixed limits:
H - pkIAYk' + 'l(t) + AykP2 (t) (55)

If the first approximation to the control T T2  (61)

function is bang-bang, it is easily seen
that all successive approximations are If we assume a fully throttlable rocket,
also bang-bang since this property propa- with a control parameter n,
gates, due to (55).

For Pk very large (compared to 0 < I < 1 (62)

11 2 (t)), Ayk is equal to zero for all
t. The threshold value of Pk is ob- 10



t h e 2' 6 8 )te D . T2  sin e + cos e - e
-T - T2i ]  (63)

, may vanish over a finite interval of time.
The function H takes the form Such arcs satisfy the weak form, but not

the strong form, of the Weierstrass condi-

2 tion; therefore fall in the gap between
, (2 (R) T 2 71 necessary and sufficient conditions for a

H - Y I  - A-- + - -sin e minimum. The question of whether an arc
R D = 0 may or may not be minimizing is

currently unresolved, and consequently we

T2r1 have no a priori assurance of a bang-bang
+ !2 V + cos ) throttle characteristic.

_T26 Some Computational Results

e The three successive approximation

schemes described earlier were mechanized
and the adjoint variables satisfy the for digital computation of planar trans-
system of differential equations fers between the orbits of Earth and Mars,

idealized as circular. A modified Adams
numerical integration scheme was used with

X (65) a fixed time interval of two days.ii - . ,nmrclitgainshm a sdwt

Having earlier obtained experience
with the gradient method 4.n a constant

[Note that for an optimal trajectory the thrust version of this examplel
0 , we first

function H* becomes the Hamiltonian performed the modification to incorporate

function, i.e. as the successive approxi- the throttle variable T. The computer

mation process converges, H* ~H.] mechanization employed alternating descent
cycles on the variables 6 and n. After

The function P' is some experimentation to select penalty
constants Ki, a family of transfers for
various specified terminal values of the

(uf)2 ' 2 vehicle mass were computed (Figs. 1 and
P " P + [KI uu) + K2 (vf-v) 2). Terminal values of radius and veloci-

ty components corresponding to the Mars
2 2 orbit were specified. The terminal value

+ K3 (Rf-R) + K4(4f-4) of the heliocentric angle 4 was left
open. The results indicated a bang-bang
throttle characteristic, the transfers

+ K(mf-)21 (66) consisting of an initial full throttle
5  m period, a coasting period, and a final

full throttle period.

Where a terminal value of a variable xi One such transfer was adopted as a
is unspecified, the corresponding Ki is test specimen for experimentation with the
taken zero. In our illustrative computa- three successive approximation techniques.
tions, we have chosen the problem of mini- The initial approximation consisted of
mum time transfer, that is circumferential thrust at full throttle in

all three cases. Penalty constants were
set at 'intermediate' values for the first

P - tf (67) sixty cycles, then increased by a factor
of thirty. It was intended to divorce the

* effect of penalty constant manipulation,
We note that the function H , (64), which has a pronounced effect on conver-

is linear in r1, a feature usually asso- gence, from the characteristics of the
ciated with bang-bang control. As recent- successive approximation methods in this
ly pointed out by Lawdenll, however, there way. This was not very successful because
is a possibility .that the collected coef- of strong interaction effects - the pen-
ficient of 1 in H* alty constant adjustment technique should

be 'tailored' to the method and to the
ii problem under attack.



Successive approximations produced Perhaps the most significant fact
by the modified gradient method are shown emerging from the experiments reported
in Figs. 3A and 3B. The decrease in the hereinis that several successive approxi-
function P' versus number of descent mation techniques can be successfully
cycles is illustrated in Fig. 3C. adapted to problems featuring inequality

constraints on the control variables. The
Corresponding results for the Min H* three methods examined are workable and

scheme are shown in Figs. 4A, 4B, and 4C. possess the 'hammer and tongs' quality so
Increments in the control variables 9 desirable for engineering applications.
and r1 were generated simultaneously dur-
ing each cycle. Values of the interpola- On the other hand, it is clear that
tion parameter corresponding to local continuing research in the class of suc-
minima of P1 in the one-dimensional cessive approximation methods is likely to
search process were found to be on the be fruitful, perhaps not only in the evo-
order of .0003 to .10, the smaller values lution of more efficient computational
arising in conjunction with large penalty schemes, but also in contributing to the
constants. understanding of the various phenomena

arising in variational problems of flight
In the first attempts at performing performance, control and guidance.

computations with the integral-absolute
value metric, a difficulty was encoun-
tered: the procedure failed to continue Acknowledgments
to produce decreases in P' after six or
seven cycles. This was traced to the fact The modified gradient and Min H*
that the search for a variation in throt- techniques were developed under Contracts
tle history is 'quantized', this arising AF 29(600)-2671 and AF 29(600)-2733 with
from the finite number of numerical inte- USAF Missile Development Center, monitored
gration steps. Thus the 'smallest varia- by AFOSR Directorate of Research Analysis,
tion' in throttle history admitted by the Holloman AFB, New Mexico. Ref. 3 presents
integration procedure is !Aql = 1 over derivations of these two schemes carried
one integration interval. If such a vari- out by means other than that employed in
ation cannot produce a decrease in P', the present paper.
the one-dimensional search fails. This
difficulty was overcome by reducing the The scheme employing the integral-
integration interval to one-tenth of that absolute value metric was an offshoot of
previously employed, i.e. from 2 days to an investigation of the Pontryagin theory
.2 days. The increase in computing time, performed under Contract Nonr 3384(00)
by a factor of approximately five, indi- with ONR's Information Systems Branch .
cates a need for employment of a variable
integration step feature in conjunction The low-thrust applications work was
with this method. performed under NASA Contract NAS 8-1549

with the Aeroballistics Division of the
The results of Figs. 5A, 5B, and 5C Marshall Space Flight Center, Huntsville,

were obtained using alternate cycles of Alabama.
the integral-absolute value scheme on i,
and the Min H* scheme on 0. As ob-
served earlier, the bang-bang character Symbols
of the throttle history is preserved
throughout the process, this being a fea- x. state variables
ture of the method. 1

Yk control variables

Concluding Remarks (') derivative with respect to time

It is felt that the numerical results gi functional representation of basic
obtained are too limited to provide con- system right members (Eq. 1)
clusions on the relative merits of the
three methods. The differences in speed t initial time
of convergence exhibited in Figs. 3, 4, 0
and 5 are insignificant in comparison to tf terminal time
improvements attainable by modest amounts
of experimentation with penalty constant C) initial conditions
adjustment procedures.
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P function of terminal values to be A gravitational constant
minimized 0

m mass
P modified function including penalty

terms (Eq. 3) 0 thrust direction angle

K positive weighting factors for pen- * heliocentric angle
alty terms

V exhaust velocity

5xi  state variable perturbations 
e

1 throttle control variable

bYk control variable perturbations
Hl f iincrement in throttle control

H function defined by Eq. 8 variable

Axi  total change in state variable ( )f final values

Ayi  total change in control variable D coefficient of 1 in H*

Eq (0< ,q '), constant
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